Fructus Silybi Mariae #### **Definition** Fructus Silybi Mariae consists of the dried ripe fruits, freed from the pappus, of *Silybum marianum* (L.) Gaertn., Asteraceae (1, 2). ## Synonyms Carduus marianus L., Carthamus maculatum Lam., Cirsium maculatum Scop., Mariana mariana (L) Hill., Silybum maculatum Moench. (3, 4). Asteraceae are also known as Compositae. #### Selected vernacular names Akùb, Artichnuat sauvage, blessed thistle, bull thistle, cardo blanco, cardo de burro, cardo mariano, carduo mariano, chardon argente, chardon-marie, épine blanche, Frauendistelfrüchte, fructus cardui mariae, fruit de chardon marie, holy thistle, kharshat barri, khorfeish, kocakavkas, kuub, Lady's milk, Lady's thistle, lait de Notre Dame, marian thistle, máriatövis-termés, mariazami, Mariendistel, Mariendistelfrüchte, Marienkörner, maritighal, mild marian thistle, milk thistle, pternix, shawkeddiman, Silberdistil, silybe, silybon, silybum, St Mary's thistle, thistle of the Blessed Virgin, true thistle, variegated marian thistle (3–7). # Geographical distribution Indigenous to North Africa, Asia Minor, southern Europe and southern Russian Federation; naturalized in North and South America, Australia, China and Central Europe (3, 4). # **Description** An annual or biennial herb, stem $20-150\,\mathrm{cm}$ high, green, glabrous or slightly arachnoid-pubescent. Leaves alternate, large, glossy green, white-veined or variegated, glabrous with strongly spiny margins, basal leaves ($25-50\,\mathrm{cm}$ long, $12-25\,\mathrm{cm}$ wide) cauline, pinnatifid. Inflorescence large, composed of red-purple, hermaphrodite, tubular florets gathered into a capitulum ($2.5-4.0\,\mathrm{cm}$ in diameter), tucked in an involucre with thorny external bracts. Fruits $6-7\,\mathrm{mm}$ long, composed of 6-8 hard-skinned achenes with a white, silky pappus ($15-20\,\mathrm{mm}$ in diameter) at apex. 2n=34 (3,7-12). # Plant material of interest: dried ripe fruits, freed from the pappus ## General appearance Obliquely obovoid with remainder of a flower crown on its top; 6–7 mm long, up to 3 mm wide, 1.5 mm thick. Testa shiny brownish-black or matt greyish-brown, with dark or greyish-white dots. At the tip, there is a projecting yellowish cartilaginous, swollen ring, and at the bottom at the side, a canaliculate hilum. Silvery pappus absent from the drug. Varieties are white, grey and black (2, 4). ## Organoleptic properties Odour: scarcely perceptible; taste: oily, bitter (2-4). ## Microscopic characteristics Pericarp epidermis a colourless palisade layer of cells (about 75 μ m long and 8 μ m wide) with a strongly thickened outside wall, which reduces the lumen in that part of the cell to a slit; subepidermal layer composed of colourless, thinwalled, parenchyma cells or groups of parenchyma cells alternating with a variable number of pigmented cells; innermost layer mostly collapsed and containing cigar-shaped or monoclinic prismatic crystals of calcium oxalate. Testa epidermis consists of large, lemon-yellow, palisade-like, elongated cells (about 150 μ m long) with striated walls and narrow lumen widening slightly at the ends; subepidermal layers have lignified and pitted cells (2, 4). # Powdered plant material Brownish-yellow. Fragments of colourless palisade-like epidermal cells from the fruit wall with attached pigment layer; epidermal cells about 75 μ m long and 8 μ m wide; cigar-shaped or monoclinic prismatic crystals of calcium oxalate; fragments of lemon-yellow, palisade-like testa cells about 150 μ m long; fragments of embryo with thin-walled cells, small druses and lipophilic substances (2). # General identity tests Macroscopic and microscopic examinations (2, 4), and thin-layer chromatography for the presence of marker compounds (taxifolin, silybin, silydianin and silychristin) (2, 13). # Purity tests # Microbiological Tests for specific microorganisms and microbial contamination limits are as described in the WHO guidelines on quality control methods for medicinal plants (14). ## Foreign organic matter Not more than 2% (1, 2). #### Total ash Not more than 8% (1, 2). #### Acid-insoluble ash Not more than 1% (1). #### Water-soluble extractive Not less than 10% (1). ## Loss on drying Not more than 8% (2). #### Pesticide residues The recommended maximum limit of aldrin and dieldrin is not more than 0.05 mg/kg (15). For other pesticides, see the *European pharmacopoeia* (15), and the WHO guidelines on quality control methods for medicinal plants (14) and pesticide residues (16). ## Heavy metals For maximum limits and analysis of heavy metals, consult the WHO guidelines on quality control methods for medicinal plants (14). #### Radioactive residues Where applicable, consult the WHO guidelines on quality control methods for medicinal plants (14) for the analysis of radioactive isotopes. # Other purity tests Chemical, sulfated ash and alcohol-soluble extractive tests to be established in accordance with national requirements. # Chemical assays Contains not less than 1.5% silymarin, calculated as silybin, as analysed by high-performance liquid chromatography (2). Other high-performance liquid chromatography methods are also available (3, 17, 18). # Major chemical constituents The major active constituents are flavonolignans (1.5–3.0%), collectively known as silymarin. The major components of the silymarin complex are the four isomers silybin and isosilybin (a 1:1 mixture of diastereoisomers), silychristin and silydianin. Other flavonolignans identified include 2,3-dehydrosilybin and 2,3-dehydrosilychristin. Taxifolin, a 2,3-dihydroflavonol, which may be regarded as the parent flavonol of the silymarin compounds, is another major marker for Fructus Silybi Mariae (3, 4, 6–8, 19, 20). The structures of the major silymarin components and taxifolin are presented below. #### Medicinal uses ## Uses supported by clinical data Supportive treatment of acute or chronic hepatitis and cirrhosis induced by alcohol, drugs or toxins (21-34). # Uses described in pharmacopoeias and in traditional systems of medicine Treatment of dyspeptic complaints and gallstones (7, 35). # Uses described in folk medicine, not supported by experimental or clinical data Treatment of amenorrhoea, constipation, diabetes, hay fever, uterine haemorrhages and varicose veins (6). # Pharmacology Most of the biochemical and pharmacological studies have been performed using a standardized silymarin preparation, or its major constituent, silybin. # Experimental pharmacology #### Antioxidant activity Silymarin and silybin have antioxidant activity in vitro: both react with oxygenfree radicals such as hydroxyl anions, phenoxy radicals and hypochlorous acid in various model systems such as human platelets, human fibroblasts, rat liver microsomes and mitochondria, and using enzymatically and non-enzymatically generated free inorganic radicals (36-42). The production of superoxide anion radicals and nitric oxide was inhibited after treatment of isolated rat Kupffer cells with silybin (IC₅₀ 80 µmol/l) (43). Both silymarin and silybin inhibited free radical-induced lipid peroxidation in microsomal and mitochondrial preparations of human red blood cells, thereby stabilizing the structure of the cell membrane (36, 44–52). Inhibition of cyclic AMP-dependent phosphodiesterase by silybin, silydianin and silychristin has been demonstrated in vitro. Since cyclic AMP is known to stabilize lysosomal membranes, an increase in the concentration of this nucleoside has been proposed to be the mechanism of membrane stabilization and thus the anti-inflammatory activity of silymarin (53). Silybin also inhibits phospholipid synthesis and breakdown in rat liver membranes in vitro, and corrects the alteration in phospholipid metabolism in ethanol-treated rats (54). Both silymarin and silybin are incorporated into the hydrophobic-hydrophilic interface of the rat microsomal membrane bilayer and alter the structure by influencing the packing of the acyl chains (47). ## Antihepatotoxic activity Silymarin and silybin inhibited hepatotoxicity induced by paracetamol (acetaminophen), amitriptyline, carbon tetrachloride, ethanol, erythromycin estolate, galactosamine, nortriptyline and *tert*-butyl hydroperoxide in rat hepatocytes in vitro (55–58). Silybin reduced ischaemic damage to nonparenchymal hepatic cells and improved post-ischaemic function in pig livers (59). Allyl alcoholinduced toxicity, and associated lipid peroxidation and glutathione depletion were suppressed after treatment of isolated rat hepatocytes with silymarin and silybin at concentrations of 0.1 and 1.0 mmol/l, respectively (60). Silybin stimulated macromolecular biosynthesis in vitro and in vivo (61–64). Silybin increased the rate of ribosomal RNA synthesis by 20% in rat liver, cultured hepatocytes and isolated liver nuclei, via activation of DNA-dependent RNA polymerase I (63). Silybin binds to the regulatory subunit of DNA-dependent RNA polymerase I at the estrogen binding site, thereby acting as a natural steroid effector, and thus activating the enzyme and increasing the rate of ribosomal RNA synthesis (64). Silybin had no effect on the transcription of RNA polymerase II or III. The increase of ribosomal RNA synthesis in the liver stimulates the formation of mature ribosomes, and hence protein biosynthesis (63). Furthermore, an increase in DNA synthesis was observed in livers from hepatectomized rats treated with silybin (27 mg/kg body weight) (65). Intraperitoneal or intragastric administration of silymarin (15–800 mg/kg body weight) to dogs, mice and rats prevented carbon tetrachloride-induced liver damage (46, 66-68). This effect of silymarin was attributed to its antioxidant activity, a decrease in the metabolic activation of carbon tetrachloride, and stabilization of hepatocyte membranes (46, 66, 67, 69). Intragastric administration of silymarin (50 mg/kg body weight) improved the metabolism and tissue distribution of aspirin in rats with carbon tetrachloride-induced liver toxicity (70). Intraperitoneal administration of either silymarin or silybin markedly inhibited liver damage induced by paracetamol (acetaminophen), Amanita phalloides toxins (e.g. phalloidin and α-amanitin), ethanol, galactosamine, halothane, polycyclic aromatic hydrocarbons, rare earth metals (e.g. cerium, praseodymium and lanthanum) and thallium in various rodent models (50, 71-81). Furthermore, intravenous administration of silybin hemisuccinate sodium salt (50 mg/kg body weight) to dogs given sublethal doses of Amanita phalloides (85 mg/kg body weight) prevented the increase in concentration of liver enzymes in the blood and the decrease in clotting factors (82). The uptake of [3H]dimethyl phalloidin in isolated rat hepatocytes was inhibited by 79% in cells treated with silybin ester (100 µg/ml) (73). However, intravenous administration of silybin (50 mg/kg body weight) to rats inhibited the protective effect of ethanol on paracetamol-induced hepatotoxicity. The combination of ethanol and silybin appeared to lead to inhibition of paracetamol metabolism by microsomes (83). Intravenous administration of silybin hemisuccinate sodium salt (50 mg/kg body weight) to mice preinfected with sublethal doses of frog virus 3 attenuated histological changes in hepatocyte nuclei; animals treated with a lethal dose of frog virus 3 showed increased survival times (84-86). Intragastric administration of silymarin ($50\,\text{mg/kg}$ body weight) to rats inhibited collagen accumulation in early and advanced biliary fibrosis secondary to complete bile duct occlusion induced by sodium amidotrizoate (87). Silymarin increased the redox state and the total glutathione content in the liver, intestine and stomach of rats after intraperitoneal administration ($200\,\text{mg/kg}$ body weight) (42, 88). In a transplantation experiment, explanted pig liver was subjected to cold-induced ischaemia by storage of the liver at 4°C for 24 hours, followed by extra-corporeal reperfusion for 4 hours. Intravenous administration of 500 mg silybin ester prior to removal of the liver, followed by 400 mg/l during cold storage and 100 mg/h during reperfusion, reduced histological damage to the liver cells (measured by bile production) and improved liver function during reperfusion by 24–66% (measured by bile acid excretion) (59). ## Anti-inflammatory and anti-allergic activity Silybin inhibited neutrophil-mediated histamine release induced by f-met peptide and anti-IgE from human basophil leukocytes. The inhibitory effect was significantly attenuated (P < 0.05) by elevating the extracellular calcium concentration. However, no effect was observed on histamine release induced by the calcium ionophore A23187 (89). Silymarin inhibited neutrophil- mediated histamine release activated by N-formylmethionyl-leucyl-phenylalanine from rat peritoneal mast cells at a concentration of 25 µg/ml (90). Silybin inhibited the synthesis of leukotriene B₄ (IC₅₀ 15 µmol/l) in isolated rat Kupffer cells, but had no effect on prostaglandin E2 formation at concentrations up to 100 µmol/l (43). Silymarin, silybin, silydianin and silychristin inhibited the activity of lipoxygenase and prostaglandin synthetase in vitro (91–93). The antiinflammatory activity of silybin was assessed in human polymorphonuclear leukocytes in vitro. The chemotactic and phagocytic activities of the polymorphonuclear leukocytes were not modified by silybin at concentrations of 0.5-25.0 µg/ml. However, the compound did inhibit luminol-enhanced chemiluminescence, suggesting that the mechanism of anti-inflammatory activity involved the inhibition of hydrogen peroxide formation (94). Intragastric administration of silymarin reduced carrageenan-induced footpad oedema in rats (ED₅₀ 62.42 mg/kg body weight). Topical application of silymarin inhibited xylene-induced ear inflammation in mice, and its activity was similar to that of indometacin (25 mg/kg body weight). In addition, silymarin inhibited leukocyte accumulation in inflammatory exudates following intraperitoneal administration of carrageenan to mice (95). Intragastric administration (25–1000 mg/kg body weight) of an acetone extract of the fruit containing silybin increased the volume and dry mass of excreted bile in rats (96). Intragastric administration of silymarin (100 mg/kg body weight) prevented gastric ulceration in rats induced by cold-restraint and pyloric ligation, but was not effective against ethanol-induced ulcers (97). Intragastric administration of silymarin (100 mg/kg body weight) to rats prevented gastric injury induced by ischaemia-reperfusion (98). # Clinical pharmacology Alcohol-induced hepatitis The efficacy of a standardized silymarin preparation for the treatment of alcohol-induced cirrhosis was assessed in six placebo-controlled clinical trials (24–27, 31, 33, 99). The majority of these studies involved between 50 and 100 patients, with one study including 170 patients (26). Patients generally received an oral dose of 280-420 mg (140 mg two or three times daily) of a standardized silymarin preparation or placebo. One of the studies had a treatment period of up to 4 years, and used survival rates as their outcome parameter. The results of this study showed a significant decrease in the mortality of patients treated with silymarin as compared with placebo (P < 0.05) (26). After treatment with the silymarin preparation (140 mg twice daily), a decrease in total bilirubin, liver enzymes and serum N-terminal propeptide of collagen type III levels was observed (25). A 6-month trial that was also double-blind assessed the efficacy of silymarin in patients who had histological documentation of chronic alcoholic hepatitis. Silymarin treatment improved histology, and lymphocyte proliferation and lipid peroxidation (24). In two studies that were also randomized and double-blind, treatment of 163 patients with the silymarin preparation decreased serum levels of liver enzymes, improved liver function, and returned sulfobromophthalein levels to normal, as compared with placebo (27,31). Another trial that was also randomized and double-blind analysed the effects of silymarin in 116 patients with alcohol-induced hepatitis, 58 of whom had liver cirrhosis. Patients received 420 mg silymarin or placebo daily for 3 months. A significant improvement was noted in both groups (P < 0.05); however, silymarin was not more effective than placebo (99). Five double-blind clinical trials assessed the efficacy of silymarin in the treatment of various chronic liver diseases induced by alcohol (22, 23, 25, 29, 30). In four of these trials, treatment of patients with 420 mg of the silymarin preparation daily for 6 months decreased the serum levels of bilirubin, procollagen III peptide and liver enzymes, and increased serum glutathione peroxidase activity and lectin-induced lymphoblast transformation (23, 25, 29, 30). In the fifth study, which was also placebo-controlled, the efficacy of silymarin was assessed in 20 patients with various chronic liver diseases. After 13 months of treatment (420 mg daily), histopathological findings showed improvements in the treated group as compared with the group that received placebo (22). In a randomized trial of 60 patients with diabetes caused by alcohol-induced cirrhosis, patients received either 600 mg silymarin daily or no treatment for 6 months (100). The blood glucose and malondialdehyde levels, daily insulin need and fasting insulinaemia levels were all significantly lower in treated patients than in those that were untreated (P < 0.05), and lower than initial baseline values (100, 101). A study without controls assessed the efficacy of a standardized silymarin preparation (420 mg daily) in inhibiting fibrotic activity in 277 patients with various chronic liver diseases. In liver fibrosis, the serum level of the procollagen III peptide increases. The elevated levels of this peptide decreased over the 4-week treatment period (102). In a drug monitoring study without controls, 108 patients with alcohol-induced hepatotoxicity and liver inflammation were treated with silymarin (200-400 mg/kg body weight, in a single dose) daily for 5 weeks. After treatment, the serum procollagen III peptide and liver enzyme levels were lower in comparison to the initial baseline values. The preparation was generally well tolerated in 98% of patients (103). The safety and efficacy of silymarin were evaluated in over 3500 patients in two drug-monitoring studies. In one study, 2637 patients with various liver disorders were treated with a standardized silymarin preparation (560 mg, given in four divided doses) daily for 8 weeks. Subjective symptoms decreased by 63%, clinical findings improved and elevated serum levels of liver enzymes were reduced in the treated group. Treatment was rated as very good, good or satisfactory by 88% of the physicians (21). Minor gastrointestinal side-effects were reported in 1% of patients (21, 28). ## Acute and chronic viral hepatitis Three controlled trials assessed the efficacy of silymarin in the treatment of acute viral hepatitis (104–106). In a randomized, double-blind study of 57 patients with acute viral hepatitis A or B, patients received 420 mg of a standardized silymarin preparation or placebo daily for 3 weeks. In the treatment group, 40% of patients had a normalized blood bilirubin level, as compared with 11% of the placebo group; 82% of the treated patients had a normalized blood level of aspartamine transaminase, as compared with 52% of the placebo group. There was no difference between the two groups in the number of patients who developed immunity (105). In another trial, the duration of inpatient care was shown to be shorter for patients treated with silymarin, compared to those who received supportive care (23.3 and 30.4 days, respectively). In patients with viral hepatitis B, treatment with silymarin led to a shorter interval to the development of immunity (30.4 days), compared to supportive therapy only (41.2 days) (104). A double-blind study in patients with acute viral hepatitis indicated that daily treatment with 420 mg silymarin (three doses of 140 mg) decreased the complications associated with the infection (106). A 12-month study combining two double-blind, placebo-controlled trials assessed the efficacy of silymarin in the treatment of chronic hepatitis, with or without cirrhosis, in 36 patients. Patients were treated with 420 mg of a standardized silymarin preparation or placebo daily for 3–12 months. Assessment of serum levels of bilirubin and liver enzymes did not reveal any significant differences in liver function between the treatment and placebo groups. However, histological improvements were noted in patients who received silymarin (107). ## Organic compound-induced hepatitis A controlled clinical study of patients with a 5–20-year history of occupational exposure to toluene and/or xylene vapours was performed to assess the efficacy of a standardized silymarin preparation on liver function. Thirty patients were treated orally with 140 mg of the preparation three times daily for 30 days, and the results were compared with those from 19 untreated matched controls. Both liver function and platelet counts markedly improved in the treated patients (the elevated serum levels of glutamic oxaloacetic transaminase and glutamic pyruvic transaminase were reduced, and the low platelet numbers increased) as compared with the controls (32). In another study, the effects of a silymarin preparation (420 mg/day) on liver function in 14 patients chronically exposed to the organophosphate malathion were assessed. After treatment, patients showed no improvement in liver function tests when compared with the controls (10 healthy volunteers) (108). # Drug-induced hepatitis A double-blind, placebo-controlled study assessed the efficacy of silymarin in the prevention of hepatic damage induced by psychotropic drugs. Sixty patients receiving chronic therapy with psychotropic drugs (butyrophenones or phenothiazines) were treated orally with 800 mg silymarin or placebo daily for 90 days. Silymarin treatment improved liver function and reduced lipoperoxida- tive hepatic damage as determined by serum malondialdehyde levels (the endproduct of the oxidation of polyunsaturated fatty acids) (109). A small clinical study found improvements in biochemical parameters in 19 patients using psychotropic drugs after 6 months of treatment with silymarin (110). ### Toxin-induced hepatitis Numerous case reports have indicated that silymarin and silybin are effective in the treatment of poisoning due to ingestion of the deathcap mushroom *Amanita phalloides* (34, 111–114). *Amanita* toxins inhibit the activity of RNA polymerase in hepatocytes, causing cell death after 12–24 hours. In a clinical trial without controls, 60 patients were treated intravenously with silybin (20 mg/kg body weight, daily for 1–2 days), 24–36 hours after ingestion of *Amanita phalloides*. The survival rate was 100% (34). Results of a multicentre study of 252 cases of poisoning due to ingestion of *Amanita phalloides* indicated that intravenous infusion of silybin (20 mg/kg body weight, daily for 1–2 days), in combination with the standard management techniques, dramatically reduced mortality, without producing side-effects (111–113). Assessment of the clinical trials of silymarin for the treatment of hepatitis induced by alcohol, drugs or toxins, and acute and chronic viral hepatitis should be interpreted with caution because of the small number of patients involved, the heterogeneity of diagnoses and outcome parameters, and the inconsistent reporting of alcohol intake by patients during the studies (115). #### **Pharmacokinetics** In a randomized, four-way crossover study without controls, a single dose of 102, 153, 203 or 254 mg silybin was administered orally to six healthy males. Silybin and isosilybin concentrations in plasma were measured as unconjugated compounds as well as total isomers after hydrolysis using high-performance liquid chromatography. Areas under the curve were linear with the dose, and only 10% of total silybin in the plasma was in the conjugated form. The elimination half-life of unconjugated silybin was less than 1 hour; that of total silybin was estimated to be 6 hours. Approximately 5% of the dose was excreted into the urine as total silybin, corresponding to a renal clearance rate of 30 ml/min (116). After oral administration of a single dose of $560\,\mathrm{mg}$ silymarin (equivalent to $240\,\mathrm{mg}$ silybin) to six healthy volunteers, maximum serum concentrations of silybin were low, ranging from 0.18 to $0.62\,\mu\mathrm{g/ml}$. Only 1–2% of the dose was excreted in the urine during the 24 hours following administration. After oral administration of a single dose of $140\,\mathrm{mg}$ silymarin (equivalent to $60\,\mathrm{mg}$ silybin) to 14 patients who had undergone cholecystectomy, bile collected from the T-tube drains contained $11–47\,\mu\mathrm{g/ml}$ silybin, equivalent to 7–15% of the dose, after 24 hours (117). Following oral administration of a single dose of a standardized silymarin preparation (140 mg) to nine patients who had undergone cholecystectomy, the urinary and biliary excretion of silybin, silydianin and silychristin were mea- sured. The urinary excretion of silybin and silychristin was insignificant. Both silybin and silychristin were excreted in the bile in the form of sulfate and glucuronide conjugates. The total elimination of silybin was estimated to be 20–40% and that of silychristin was 4–10%. Urinary excretion of silymarin occurred over a 24-hour period, with maximum excretion occurring between 2 and 9 hours after administration (118). The bioavailability of silymarin varies considerably and is dependent on the formulation of the product (119). #### Contraindications Fructus Silybi Mariae is contraindicated in cases of known allergy to plants of the Asteraceae family (120). # Warnings No information available. #### **Precautions** No information available on general precautions or precautions concerning drug interactions; drug and laboratory test interactions; carcinogenesis, mutagenesis, impairment of fertility; teratogenic and non-teratogenic effects in pregnancy; nursing mothers; or paediatric use. Therefore, Fructus Silybi Mariae should not be administered during pregnancy or lactation or to children without medical supervision. #### Adverse reactions Crude drug: one case of anaphylactic shock was reported in a patient ingesting a tea prepared from Fructus Silybi Mariae (120). Standardized preparation: a mild laxative effect has been reported (35). # Dosage forms Usually standardized extracts for phytomedicine; crude drug for decoction (4). Store in a well-closed container, protected from light and humidity (2). # Posology (Unless otherwise indicated) Daily dosage: 12–15 g crude drug (35); 200–400 mg silymarin, calculated as silybin, in standardized preparations (35). A parenteral preparation, silybin hemisuccinate sodium salt, is available in Germany for treatment of poisoning due to ingestion of *Amanita phalloides* (111–114, 121). The total dosage is 20 mg/kg body weight, given as four infusions over a 24-hour period, with each dose administered over a 2-hour period (121). #### References - 1. British herbal pharmacopoeia. London, British Herbal Medicine Association, 1996. - 2. Deutsches Arzneibuch. Stuttgart, Deutscher Apotheker Verlag, 1998. - 3. Blaschek W et al., eds. Hägers Handbuch der pharmazeutischen Praxis. Folgeband 2: Drogen A–K, 5th ed. Berlin, Springer-Verlag, 1998. - 4. Bisset NG. Herbal drugs and phytopharmaceuticals. Boca Raton, FL, CRC Press, 1994. - 5. Bedevian AK. Illustrated polyglottic dictionary of plant names in Latin, Arabic, Armenian, English, French, German, Italian and Turkish languages. Cairo, Argus & Papazian Press, 1936. - Farnsworth NR, ed. NAPRALERT database. Chicago, University of Illinois at Chicago, IL, February 9, 1998 production (an online database available directly through the University of Illinois at Chicago or through the Scientific and Technical Network [STN] of Chemical Abstracts Services). - 7. Morazzoni P, Bombardelli E. Silybum marianum (Carduus marianus). Fitoterapia, 1995, 66:3–42. - 8. Bruneton J. Pharmacognosy, phytochemistry, medicinal plants. Paris, Lavoisier, 1995. - 9. Leng-Peschlow E, Strenge-Hesse A. The milk thistle (Silybum marianum) and silymarin as hepatic therapeutic agents. Zeitschrift für Phytotherapie, 1991, 12:162–174. - 10. Leng-Peschlow E. Properties and medical use of flavonolignans (silymarin) from *Silyhum marianum. Phytotherapy Research*, 1996, 10 (Suppl. 1):S25–S26. - 11. Tutin TG, eds. Flora Europea. Vol. 4. Cambridge, Cambridge University Press, 1976. - 12. Hegi G, ed. *Illustrierte Flora von Mittel-Europa*. Vol. 6 (2. Hälfte). Munich, JF Lehmanns Verlag, 1922. - 13. Wagner H, Bladt S. Plant drug analysis, 2nd ed. Berlin, Springer-Verlag, 1995. - 14. Quality control methods for medicinal plant materials. Geneva, World Health Organization, 1998. - 15. European pharmacopoeia, 3rd ed. Strasbourg, Council of Europe, 1996. - 16. Guidelines for predicting dietary intake of pesticide residues, 2nd rev. ed. Geneva, World Health Organization, 1997 (document WHO/FSF/FOS/97.7). - 17. Tittel G, Wagner H. High-performance liquid chromatographic separation of silymarins and their determination in raw extracts of *Silybum marianum* Gaertn. *Journal of Chromatography*, 1977, 135:499–501. - Tittel G, Wagner H. High-performance liquid chromatography of silymarin. II. Quantitative determination of silymarin from Silybum marianum by high-performance liquid chromatography. Journal of Chromatography, 1978, 153:227–228. - 19. Wagner H, Diesel P, Seitz M. The chemistry and analysis of silymarin from *Silybum marianum* Gaertn. *Arzneimittel-Forschung*, 1974, 24:466–471. - 20. Wagner H et al. Silydianin and silychristin, two isomeric silymarins from *Silybum marianum* (milk thistle). *Zeitschrift für Naturforschung, Series B*, 1976, 31:876–880 - 21. Albrecht M et al. Die Therapie toxischer Leberschäden mit Legalon®. Zeitschrift für Klinische Medizin, 1992, 47:87–92. - 22. Berenguer J, Carrasco D. Ensayo doble ciego de Silimarina frente a placebo en el tratamiento de hepatopatías crónicas de diversa génesis. *Münchener Medizinische Wochenschrift*, 1977, 119:240–260. - 23. Deák G et al. Silymarin kezelés immunmoduláns hatása krónikus alkoholos májbetegségben. *Orvosi Hetilap*, 1990, 131:1291–1296. - 24. Feher J, Lang I. Wirkmechanismen der sogenannten Leberschutzmittel. *Bayer Internist*, 1988, 4:3–7. - 25. Feher J et al. Hepatoprotective activity of silymarin Legalon therapy in patients with chronic alcoholic liver disease. *Orvosi Hetilap*, 1989, 130:2723–2727. - 26. Ferenci P et al. Randomized controlled trial of silymarin treatment in patients with cirrhosis of the liver. *Journal of Hepatology*, 1989, 9:105–113. - 27. Fintelmann V, Albert A. Nachweis der therapeutischen Wirksamkeit von Legalon® bei toxischen Lebererkrankungen im Doppelblindversuch. *Therapiewoche*, 1980, 30: 5589–5594. - 28. Grüngreiff K et al. Nutzen der medikamentösen Lebertherapie in der hausärztlichen Praxis. Die Medizinische Welt, 1995, 46:222–227. - 29. Müzes M et al. Silymarin (Legalon®) kezelés hatása idült alkoholos májbetegek antioxidáns védorendszerée és a lipid peroxidációra (kettos vak protokoll). *Orvosi Hetilap*, 1990, 131:863–866. - 30. Láng I et al. Hepatoprotective and immunomodulatory effects of antioxidant therapy. *Acta Medica Hungarica*, 1988, 45:287–295. - 31. Salmi HA, Sarna S. Effect of silymarin on chemical, functional, and morphological alterations of the liver. *Scandinavian Journal of Gastroenterology*, 1982, 17:517–521 - 32. Szilárd S et al. Protective effect of Legalon® in workers exposed to organic solvents. *Acta Medica Hungarica*, 1988, 45:249–256. - 33. Varis K et al. Die Therapie der Lebererkrankung mit Legalon: eine kontrollierte Doppelblindstudie. In: *Aktuelle Hepathologie, Third International Symposium, Cologne*. Lübeck, Hanseatisches Verlagskontor, 1978:42–43. - 34. Vogel G. Natural substances with effects on the liver. In: Wagner H, Wolff P. New natural products and plant drugs with pharmacological, biological or therapeutic activity. New York, NY, Springer-Verlag, 1977:2651–2665. - 35. Blumenthal M et al., eds. *The complete German Commission E monographs*. Austin, TX, American Botanical Council, 1998. - 36. Cavallini I., Bindoli A, Siliprandi N. Comparative evaluation of antiperoxidative action of silymarin and other flavonoids. *Pharmacological Research Communications*, 1978, 10:133–136. - 37. Dehmlow C, Murawski N, de Groot H. Scavenging of reactive oxygen species and inhibition of arachidonic acid metabolism by silibinin in human cells. *Life Sciences*, 1996, 58:1591–1600. - 38. György I, Azvedo MS, Manso C. Reactions of inorganic free radicals with liver-protecting drugs. *Radiation Physical Chemistry*, 1990, 36:165–167. - 39. Mira ML, Azvedo MS, Manso C. The neutralization of hydroxyl radical by silibin, sorbinil and bendazac. *Free Radical Research Communications*, 1987, 4:125–129. - 40. Noel-Hudson MS et al. In vitro cytotoxic effects of enzymatically induced oxygen radicals in human fibroblasts: experimental procedures and protection by radical scavengers. *Toxicology in Vitro*, 1989, 3:103–109. - 41. Pascual C et al. Effect of silymarin and silybin on oxygen radicals. *Drug Development Research*, 1993, 29:73–77. - 42. Valenzuela A, Garrido A. Biochemical bases of the pharmacological action of the flavonoid silymarin and of its structural isomer silibinin. *Biological Research*, 1994, 27:105–112. - 43. Dehmlow C, Erhard J, De Groot H. Inhibition of Kupffer cell functions as an explanation for the hepatoprotective properties of silibinin. *Hepatology*, 1996, 23:749–754. - 44. Bindoli A, Cavallini L, Siliprandi N. Inhibitory action of silymarin of lipid peroxide formation in rat liver mitochondria and microsomes. *Biochemical Pharmacology*, 1977, 26:2405–2409. - 45. Koch HP, Löffler E. Influence of silymarin and some flavonoids on lipid peroxidation in human platelets. *Methods and Experimental Findings in Clinical Pharmacology*, 1985, 7:13–18. - 46. Lettéron P et al. Mechanism for the protective effects of silymarin against carbon tetrachloride-induced lipid peroxidation and hepatotoxicity in mice. *Biochemical Pharmacology*, 1990, 39:2027–2034. - 47. Parasassi T et al. Drug-membrane interactions: silymarin, silibyn and microsomal membranes. *Cell Biochemistry and Function*, 1984, 2:85–88. - 48. Ramellini G, Meldolesi J. Stabilization of isolated rat liver plasma membranes by treatment in vitro with silymarin. *Arzneimittel-Forschung*, 1974, 24:806–808. - 49. Valenzuela A et al. Inhibitory effect of the flavonoid silymarin on the erythrocyte hemolysis induced by phenylhydrazine. *Biochemical and Biophysical Research Communications*, 1985, 126:712–718. - 50. Valenzuela A et al. Silymarin protection against hepatic lipid peroxidation induced by acute ethanol intoxication in the rat. *Biochemical Pharmacology*, 1985, 34:2209–2212. - 51. Valenzuela A, Guerra R. Differential effect of silybin on the Fe²⁺-ADP and *t*-butyl hydroperoxide-induced microsomal lipid peroxidation. *Experientia*, 1986, 42:139–141. - 52. Valenzuela A, Guerra R, Garrido A. Silybin dihemisuccinate protects rat erythrocytes against phenylhydrazine-induced lipid peroxidation and hemolysis. *Planta Medica*, 1987, 53:402–405. - 53. Koch HP et al. Silymarin: potent inhibitor of cyclic AMP phosphodiesterase. *Methods and Experimental Findings in Clinical Pharmacology*, 1985, 7:409–413. - 54. Castigli E et al. The activity of silybin on phospholipid metabolism of normal and fatty liver in vivo. *Pharmacological Research Communications*, 1977, 9:59–69. - 55. Davila JC, Lenherr A, Acosta D. Protective effect of flavonoids on drug-induced hepatotoxicity in vitro. *Toxicology*, 1989, 57:267–286. - 56. Hikino H et al. Antihepatotoxic actions of flavonolignans from *Silybum marianum* fruits. *Planta Medica*, 1984, 50:248–250. - 57. Joyeux M et al. *Tert*-butyl hydroperoxide-induced injury in isolated rat hepatocytes: a model for studying anti-hepatotoxic crude drugs. *Planta Medica*, 1990, 56:171–174. - 58. Ramellini G, Meldolesi J. Liver protection by silymarin: in vitro effect on dissociated rat hepatocytes. *Arzneimittel-Forschung*, 1976, 26:69–73. - 59. Blumhardt G et al. Silibinin reduces ischemic damage to nonparenchymal cells and improves post-ischemic liver function of UW-preserved porcine livers. *Zeitschrift für Gastroenterologie*, 1994, 32:59 (abstract). - Miguez MP et al. Hepatoprotective mechanism of silymarin: no evidence for involvement of cytochrome P450 2E1. Chemico-biological Interactions, 1994, 91:51– 63. - 61. Machicao F, Sonnenbichler J. Mechanism of the stimulation of RNA synthesis in rat liver nuclei by silybin. *Hoppe-Seyler's Zeitschrift für Physiologische Chemie*, 1977, 358:141–147. - 62. Sonnenbichler J, Mattersberger J, Rosen H. Stimulierung der RNA-Synthese in Rattenleber und in isolierten Hepatozyten durch Silybin, einen antihepatotoxischen Wirkstoff aus Silybum marianum L. Gaertn. Hoppe-Seyler's Zeitschrift für Physiologische Chemie, 1976, 357:1171–1180. - 63. Sonnenbichler J, Zetl I. Stimulating influence of a flavonolignane derivative on proliferation, RNA synthesis and protein synthesis in liver cells. In: Okolicsanyi L et al., eds. *Assessment and management of hepatobiliary disease*. Berlin, Springer-Verlag, 1987:265–272. - 64. Sonnenbichler J, Zetl I. Biochemistry of a liver drug from the thistle *Silybum marianum*. *Planta Medica*, 1992, 58 (Suppl.): A580–A581. - 65. Sonnenbichler J et al. Stimulatory effect of silibinin on the DNA synthesis in partially hepatectomized rat livers: non-response in hepatoma and other malign cell lines. *Biochemical Pharmacology*, 1986, 35:538–541. - 66. Martin R et al. Hepatic regeneration drugs in dogs: effect of choline and silibin in dogs with liver damage. *Veterinary Medicine*, 1984, April: 504–510. - 67. Mourelle M et al. Prevention of CCl₄-induced liver cirrhosis by silymarin. Fundamentals of Clinical Pharmacology, 1989, 3:183-191. - 68. Muriel P, Mourelle M. Prevention by silymarin of membrane alterations in acute CCl₄-induced liver damage. Journal of Applied Toxicology, 1990, 10:275–279. - 69. Muriel P, Mourelle M. The role of membrane composition in ATPase activities of cirrhotic rat liver: effect of silymarin. *Journal of Applied Toxicology*, 1990, 10:281–284. - 70. Mourelle M, Favari L. Silymarin improves metabolism and disposition of aspirin in cirrhotic rats. Life Sciences, 1989, 43:201-207. - 71. Barbarino F et al. Effect of silymarin on experimental liver lesions. Revue roumaine de Médecine, 1981, 19:347–357. - 72. Campos R et al. Silybin dihemisuccinate protects against glutathione depletion and lipid peroxidation induced by acetaminophen on rat liver. Planta Medica, 1989, 55:417-419. - 73. Faulstich H, Jahn W, Wieland T. Silybin inhibition of amatoxin uptake in the perfused rat liver. Arzneimittel-Forschung, 1980, 30:452-454. - 74. Janiak B. Die Hemmung der Lebermikrosomenaktivität bei der Maus nach einmaliger Halothannarkose und seine Beeinflussbarkeit durch Silybin (Silymarin). Anaesthesist, 1974, 23:389–393. - 75. Meiss R et al. Effect of silybin on hepatic cell membranes after damage by polycyclic aromatic hydrocarbons (PAH). Agents and Actions, 1982, 12:254–257. - 76. Mourelle M, Favari L, Amezcua JL. Protection against thallium hepatotoxicity by - silymarin. *Journal of Applied Toxicology*, 1988, 8:351–354. 77. Strubelt O, Siegers C-P, Younes M. The influence of silybin on the hepatotoxic and hypoglycemic effects of praseodymium and other lanthanides. Arzneimittel-Forschung, 1980, 30:1690-1694. - 78. Trost W, Lang W. Effect of thioctic acid and silibinin on the survival rate in amanitin- and phalloidin-poisoned mice. IRCS Medical Science, 1984, 12:1079-1080. - 79. Tuchweber B et al. Prevention of praseodymium-induced hepatotoxicity by silybin. Toxicology and Applied Pharmacology, 1976, 38:559–570. - 80. Tyutyulkova N et al. Hepatoprotective effect of silymarin (Carsil) on liver of Dgalactosamine-treated rats. Biochemical and morphological investigations. *Methods* and Findings in Experimental Clinical Pharmacology, 1981, 3:71–77. - 81. Wang M et al. Hepatoprotective properties of Silybum marianum herbal preparation on ethanol-induced liver damage. Fitoterapia, 1996, 67:166-171. - 82. Floersheim GL et al. Effects of penicillin and silymarin on liver enzymes and blood clotting factors in dogs given a boiled preparation of Amanita phalloides. Toxicology and Applied Pharmacology, 1978, 46:455–462. - 83. Garrido A et al. The flavonoid silybin ameliorates the protective effect of ethanol on acetaminophen hepatotoxicity. Research Communications in Substances of Abuse, 1989, 10:193–196. - 84. Elharrar M et al. Ein neues Modell der experimentellen toxischen Hepatitis. Arzneimittel-Forschung, 1975, 25:1586–1591. - 85. Gendrault JL et al. Wirkung eines wasserlöslichen Derivates von Silymarin auf die durch Frog-Virus 3 an Mäusehepatozyten hervorgerufenen morphologischen und funktionellen Veränderungen. Arzneimittel-Forschung, 1979, 29:786–791. - 86. Steffan AM, Kirn A. Multiplication of vaccinia virus in the livers of mice after frog virus 3-induced damage to sinusoidal cells. Journal of the Reticuloendothelial Society, 1979, 26:531–538. - 87. Boigk G et al. Silymarin retards collagen accumulation in early and advanced biliary fibrosis secondary to complete bile duct obliteration in rats. Hepatology, 1997, 26: 643-649. - 88. Valenzuela A et al. Selectivity of silymarin on the increase of the glutathione content in different tissues of the rat. Planta Medica, 1989, 55:420-422. - 89. Miadonna A et al. Effects of silybin on histamine release from human basophil leucocytes. *British Journal of Clinical Pharmacology*, 1987, 24:747–752. - 90. Fantozzi R et al. FMLP-activated neutrophils evoke histamine release from mast cells. *Agents and Actions*, 1986, 18:155–158. - 91. Baumann J, Wurm G, von Bruchhausen F. Hemmung der Prostaglandinsynthetase durch Flavonoide und Phenolderivate im Vergleich mit deren O₂-Radikalfängereigenschaften. *Archiv der Pharmazie* (Weinheim), 1980, 313:330–337. - 92. Fiebrich F, Koch H. Silymarin, an inhibitor of lipoxygenase. *Experientia*, 1979, 35:1548–1550. - 93. Fiebrich F, Koch H. Silymarin, an inhibitor of prostaglandin synthetase. *Experientia*, 1979, 35:1550–1552. - 94. Minonzio F et al. Modulation of human polymorphonuclear leukocyte function by the flavonoid silybin. *International Journal of Tissue Reactions*, 1988, 10:223–231. - 95. De La Puerta R et al. Effect of silymarin of different acute inflammation models and on leukocyte migration. *Journal of Pharmacy and Pharmacology*, 1996, 48:969–970. - 96. Danielak R, Popowska E, Borkowski B. The preparation of vegetable products containing isofraxidin, silibin, and *Glaucium* alkaloids and evaluation of their choleretic action. *Polish Pharmacology and Pharmacy*, 1973, 25:271–283. - 97. Alarcón de la Lastra C et al. Gastric anti-ulcer activity of silymarin, a lipoxygenase inhibitor, in rats. *Journal of Pharmacy and Pharmacology*, 1992, 44:929–931. - 98. Alarcón de la Lastra C et al. Gastroprotection induced by silymarin, the hepatoprotective principle of *Silyhum marianum* in ischemia-reperfusion mucosal injury: role of neutrophils. *Planta Medica*, 1995, 61:116–119. - 99. Trinchet JC et al. Traitement de l'hépatite alcoolique par la silymarine. Une étude comparative en double insu chez 116 malades. *Gastroenterologie clinique et biologie*, 1989, 13:120–124. - 100. Velussi M et al. Silymarin reduces hyperinsulinemia, malondialdehyde levels, and daily insulin need in cirrhotic diabetic patients. *Current Therapeutic Research*, 1993, 53:533–544. - 101. Velussi M et al. Long-term (12 months) treatment with an antioxidant drug (silymarin) is effective on hyperinsulinemia, exogenous insulin need and malondialdehyde levels in cirrhotic diabetic patients. *Journal of Hepatology*, 1997, 26:871– 879. - 102. Held C. Fibrose-Hemmung unter Praxisbedingen. *Therapiewoche*, 1992, 42:1696–1701. - 103. Held C. Therapie der toxischen Hepatopathien. Mariendistel verringert Fibroseaktivität. *Therapiewoche*, 1993, 43:2002–2009. - 104. Cavalieri S. Kontrollierte klinische Pruefung von Legalon. *Gazzette Medica Italiana*, 1974, 133:628. - 105. Magliulo E et al. Zur Wirkung von Silymarin bei der Behandlung der akuten Virushepatitis. *Medizinische Klinik*, 1978, 73:1060–1065. - 106. Plomteux G et al. Hepatoprotector action of silymarin in human acute viral hepatitis. *International Research Communications Systems*, 1977, 5:259–261. - 107. Kiesewetter E et al. Ergebnisse zweier Doppelblindstudien zur Wirksamkeit von Silymarin bei chronischer Hepatitis. *Leber, Magen, Darm*, 1977, 7:318–323. - 108. Boari C et al. Silymarin in the protection against exogenous noxae. *Drugs in Experimental Clinical Research*, 1981, 7:115–120. - 109. Palasciano G et al. The effect of silymarin on plasma levels of malondialdehyde in patients receiving long-term treatment with psychotrophic drugs. *Current Therapeutic Research*, 1994, 55:537–545. - 110. Saba P et al. Effetti terapeutici della silimarina nelle epatopatie croniche indotte da psicofarmaci. *Gazzetta Medica Italiana*, 1976, 135:236–251. - 111. Floersheim GL et al. Clinical deathcap (Amanita phalloides) poisoning: prognostic - factors and therapeutic measures. Analysis of 205 cases. Schweizerische Medizinische Wochenschrift, 1982, 112:1164–1177. - 112. Hruby C. Silibinin in the treatment of deathcap fungus poisoning. *Forum*, 1984, 6: 23–26. - 113. Hruby C et al. Pharmakotherapie der Knollenblätterpilzvergiftung mit Silibinin. Wiener Klinische Wochenschrift, 1983, 95:225–231. - 114. Vogel G. The anti-Amanita effect of silymarin. In: Faulstich H et al., eds. Amanita toxins and poisonings. International Amanita symposium. Baden-Baden, Gerhard & Witzstrock, 1980:180–189. - 115. Flora K et al. Milk thistle (Silybum marianum) for the therapy of liver disease. American Journal of Gastroenterology, 1998, 93:139–143. - 116. Weyhenmeyer R, Mascher H, Birkmayer J. Study on dose-linearity of the pharmacokinetics of silibinin diastereomers using a new stereospecific assay. *International Journal of Clinical Pharmacology*, 1992, 30:134–138. - 117. Lorenz D et al. Pharmacokinetic studies with silymarin in human serum and bile. *Methods and Experimental Findings in Clinical Pharmacology*, 1984, 6:655–661. - 118. Flory PJ et al. Studies on elimination of silymarin in cholecystectomized patients. I. Biliary and renal elimination after a single oral dose. *Planta Medica*, 1980, 38: 227–237. - 119. Schultz HU et al. Untersuchungen zum Freisetzungsverhalten und zur Bioäquivalenz von Silymarin-Präparaten. *Arzneimittel-Forschung*, 1995, 45:61–64. - 120. Geier J, Fuchs T, Wahl R. Anaphylaktischer Schock durch einen Mariendistel-Extrakt bei Soforttyp-Allergie auf Kiwi. *Allergologie*, 1990, 13:387–388. - 121. Schultz V et al. Rational phytotherapy. A physician's guide to herbal medicine. Berlin, Springer-Verlag, 1997.